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new proof for the S1 case, based on Hamiltonian methods, which demonstrates that the

result holds for arbitrary perturbations around a static black hole background. We further

apply these methods to derive the first law for black holes in 2-torus compactifications,

where there are three real moduli. We find that the result can be simply stated in terms of

constructs familiar from the physics of elastic materials, the stress and strain tensors. The

strain tensor encodes the change in size and shape of the 2-torus as the moduli are varied.

The role of the stress tensor is played by a tension tensor, which generalizes the spacetime

tension that enters the first law in the S1 case.
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1. Introduction

In recent years there has been great interest in higher dimensional black hole spacetimes.

The discovery of stationary black rings in five dimensions with horizon topology S 2×S1 [1],

in particular, showed that the classification of asymptotically flat black holes will not be a

simple extension of the four dimensional results.

Interest has also focused on black holes with Kaluza-Klein boundary conditions, i.e.

those that approach Minkowski space M times a compact Ricci-flat space K at infinity.

Already in the simplest case of compactification on a circle, Kaluza-Klein black holes

display many interesting physical phenomena, such as the Gregory-Laflamme instability of

black strings and the black hole-black string transition.1 For compactification on a more

general Ricci-flat compact space K, one expects similar phenomena. A black hole horizon,

for example, may be localized on K, or it may wrap some topologically non-trivial cycle

of K. The space of black hole solutions with these boundary conditions will exhibit a

correspondingly rich phase structure.

1We refer the reader to the reviews [2] and [3] for detailed discussions and references.

– 1 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
2

In this paper we will focus on the first law of black hole mechanics for Kaluza-Klein

black holes. For asymptotically flat black holes, the first law [4] relates the variation of the

horizon area to the variations of quantities defined at infinity, such as the ADM mass and

angular momentum. For Kaluza-Klein black holes, there are additional parameters that

characterize the spacetime at infinity, namely the moduli of the compact manifold K. One

can now consider two nearby black hole solutions that both approach M ×K at infinity,

but with slightly shifted values of the moduli. Our particular object in this paper will be

determining how such variations in the moduli enter into the first law for Kaluza-Klein

black holes.

If the compact manifold is a circle, there is a single modulus, which is simply the length

L of the circle. In this case, the first law including variations in L has been worked out

in [5, 6]. In addition to the length L, spacetimes asymptotic to M×S1 are characterized at

infinity by the ADM mass M and the tension T . The ADM mass is, of course, a familiar

quantitiy and is defined with respect to the asymptotic time translation Killing vector.

The spacetime tension T [7, 5, 8] is similarly defined with respect to the asymptotic spatial

translation Killing vector around the S1. The first law for black hole spacetimes is then

given by [5, 6]

δM =
κ

8πG
δA+ T δL. (1.1)

We see that in addition to the usual κδA term, there is a ‘work’ term given by the product

of the tension and the variation in the length of the S1 at spatial infinity. A positive

spacetime tension corresponds to a negative pressure. It was shown in reference [9] that

the gravitational contribution to the spacetime tension, exclusive of any matter sources

which might have negative tension (i.e. positive pressure), is always positive. Hence the

coefficient of δL has the opposite sign than is common in thermodynamics, where one

generally considers positive pressures.

In this paper, we will present a new derivation of the first law (1.1) for S1 Kaluza-Klein

black holes. Our proof is based on Hamiltonian methods that were used in reference [10]

to derive a Gauss’s law type relation for perturbations in general relativity, and in refer-

ence [11] to derive the first law with asymptotically flat boundary conditions. This new

proof extends the range of validity of the first law (1.1) in the following way. While the

derivations given in [5] and [6] each make certain symmetry assumptions about the allowed

perturbations, the new derivation, like that of [11], holds for arbitrary perturbations be-

tween solutions. In particular, although equation (1.1) refers to perturbations around a

static black hole, the perturbations themselves need not be static. With our analysis is is

also straightforward to add perturbative sources of stress-energy, see section (4.3).

We then go on to apply the Hamiltonian formalism to derive the first law in the case

that the compact space K is a 2-torus. We consider how the ADM mass of a black hole

varies under arbitrary deformations of the shape and size of the T 2. We find that the first

law, in this case, takes the form

δM =
κ

8πG
δA+ V T ABδσAB . (1.2)
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Here V is the volume of the torus, δσAB is the strain tensor corresponding to the defor-

mation of the T 2, and T AB is a “tension tensor” that generalizes the tension T of the S1

case. We expect that this result will extend to compactifications on higher dimensional

tori K = T n as well.

2. ADM mass and tension

We begin by reviewing the formulas for the ADM mass and tension in the case K =

S1 [6]. Let us write the spacetime metric near infinity as gab = ηab + hab, where ηab
is the D-dimensional Minkowski metric. The components of hab are assumed to fall-off

sufficiently rapidly that the integral expressions for the mass and tension are well-defined

(see equation (2.3) below). In the asymptotic region, write the spacetime coordinates as

xa = (t, z, xi), where i = 1, . . . , D − 2. The coordinate z goes around the S1 and is

identified with period L. The ADM mass is the gravitational charge associated with the

asymptotic time translation symmetry ∂/∂t. If Σ is a spatial slice and ∂Σ∞ its boundary

at spatial infinity, then in asymptotically Cartesian coordinates, the ADM mass is given

by the integral

M =
1

16πG

∫

∂Σ∞
dz dsi

(
−∂ihjj − ∂ihzz + ∂jh

ij
)

(2.1)

where indices are raised and lowered with the asymptotic metric ηab and the area element

dsi is that of a sphere SD−3 at infinity in a slice of constant t and z. The tension is the

gravitational charge associated with the asymptotic spatial translation Killing vector ∂/∂z.

The tension is similarly given by the integral

T = − 1

16πG

∫

∂Σ∞
dsi
(
−∂ihjj − ∂ihtt + ∂jh

ij
)
. (2.2)

Note that in contrast with the ADM mass, the definition of the tension does not include

an integral in the z-direction. The ADM mass is an integral over the boundary of a slice of

constant t, which includes the direction around the S1. The tension, on the other hand, is

defined [7, 5, 8] by an integral over the boundary of a slice of constant z. This includes, in

principle, an integration over time. However, if one expands the integrand around spatial

infinity, one finds that terms that make non-zero contributions to the integral are always

time independent. Time dependent terms fall-off too rapidly to contribute. Hence, one can

omit the integration over the time direction and work with the quantity T defined above,

which is strictly speaking a ‘tension per unit time’. Similar issues will arise in the definition

of the tension tensor, when we consider T 2 compactifications. It is also useful to note, that

the expression (2.1) for the ADM mass does not involve htt, while the expression (2.2) for

the tension does not involve hzz. These features follow naturally from the Hamiltonian

derivation of the gravitational charges (see e.g. references [12, 13, 7, 11]).

Making use of the linearized Einstein equations in the asymptotic region, the ADM

mass and tension intergrals may be evaluated [6] in terms of the asymptotic behavior of

the metric coefficients

gtt ' −1 +
ct

rD−4
, gzz ' 1 +

cz
rD−4

. (2.3)
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with the results

M =
ΩD−3L
16πG

((D − 3)ct − cz), T = −ΩD−3

16πG
((D − 3)cz − ct). (2.4)

We will make use of these formulas below and derive similar expressions for the mass M
and tension tensor T AB for T 2 compactifications.

3. The first law: two examples

Before proceeding with our derivation of equation (1.1), we examine in some greater detail

how the first law operates in two simple examples, the uniform black string and the static

Kaluza-Klein bubble. These examples help build intuition into the physical significance of

the work term in the first law.

3.1 The uniform black string

The metric for the uniform black string is given by

ds2 = −(1− c

rD−4
)dt2 + dz2 + (1− c

rD−4
)−1dr2 + r2dΩ2

D−3. (3.1)

The coordinate z in the S1 direction may be identified with any period L. In terms of

the asymptotic behavior of the metric coefficients in (2.3) this means that we have ct = c,

while cz = 0. Using (2.4), one finds that the ADM mass and tension of the black string

are given by

M =
ΩD−3L
16πG

(D − 3) c, T =
ΩD−3

16πG
c. (3.2)

The tension T is simply equal to a constant factor, 1/(D − 3), times the mass per unit

length M/L.

Given that the metric is flat in the z-direction and that the period L may be set freely

by hand, it seems surprising that changes δL in the period around the S1 are part of a

non-trivial thermodynamic relation. In particular, since the mass M in (3.2) is linear in

L, one might expect that the coefficient of δL in equation (1.1) should simply be M/L.

However, this intuition misses the fact that, if L is varied with the parameter c being held

fixed, the horizon area will also change. In order to hold A fixed, the parameter c must

be varied in a precise way, as L is varied. One way to see how the first law then works

out is to express the mass in terms of the horizon area A and the period L as independent

variables.

The black string horizon has spatial topology SD−3 × S1 and radius rh = c1/(D−4).

The horizon area is then given by A = ΩD−3L rD−3
h , while the surface gravity is simply

κ = (D−4)/2rh. We can now solve for the parameter c in terms of A and L and substitute

into (3.2) to get the expression for the mass

M =
D − 3

16πG
(ΩD−3L)

1
D−3AD−4

D−3 (3.3)
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in whichA and Lmay be regarded as independent variables. The surface gravity is similarly

given in terms of A and L by

κ =

( A
ΩD−3L

)D−4
D−3

(3.4)

The first law (1.1) can then verified by the explicit computations

δM
δL

∣∣∣∣
δA=0

=
1

D − 3

M
L = T , δM

δA

∣∣∣∣
δL=0

=
D − 4

16πG
(ΩD−3L)

1
D−3A− 1

D−3 =
κ

8πG
. (3.5)

In particular we see that, with the horizon area held fixed, the work required to stretch

the length of the S1 by δL is indeed proportional to the tension T .

For static, non-uniform black strings, the ADM mass will again be simply proportional

to the period L as in equation (2.4). In this case, one cannot do the explicit calculations

above to verify the first law. Since we do not know the solution in the interior, we cannot

vary it in such a way that the horizon area stays fixed as we vary L. Nevertheless, the first

law guarantees that when the horizon area of the black hole is held fixed, the change inM
under a variation in L will be proportional to the tension T . This comes comes about, as

we will see below, because the first law follows from a relation between a boundary integral

at the horizon and one at spatial infinity. This relation holds for any perturbation of a

static solution to a nearby solution of the equation of motions, and does not rely on any

detailed knowledge of the unperturbed solution in the interior.

3.2 The static Kaluza-Klein bubble

The static Kaluza-Klein bubble is given by the double analytic continuation of the uniform

black string

ds2 = −dt2 + (1− c

rD−4
)dz2 +

dr2

(1− c
rD−4 )

+ r2dΩ2
D−3. (3.6)

The asymptotic behavior of the metric functions in (2.3) is given by ct = 0 and cz = −c,
while the bubble mass and tension are determined according to equation (2.4) to be

M =
ΩD−3L
16πG

c, T = (D − 3)
ΩD−3

16πG
c = (D − 3)

M
L . (3.7)

In this case, the z direction is not flat, and it is perhaps less surprising that varying

the period L should enter non-trivially into the first law. The application of the first law in

the KK bubble case, however, is rather different than the uniform black string and exposes

some new features.

The first observation to make is that the KK Bubble has no horizon. Hence the first

law (1.1) reduces to the statement δM = T δL. This is again in seeming conflict with the

fact that the expression for the ADM mass is linear in the period L, which would lead one

to expect that δM should be proportional to M/L, rather than the tension T .

However, there is an additional complication that must be taken into account for the

KK bubble. As we will see below, the derivation of the first law (1.1) assumes that the

only internal boundaries on a spacelike slice are black hole horizons. If other internal

boundaries were present, then the first law would acquire additional terms. For general

– 5 –
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values of the parameters c and L, the KK bubble has a conical singularity at the bubble

radius rB = c
1

D−4 . In order for the metric to be smooth at rB , the period L of the z

coordinate must be fixed to be

L =
4πrB
D − 4

. (3.8)

In order that the first law (1.1) should apply as stated to the KK bubble, this condition

must be preserved by any variations. Hence, if the period L is varied, the parameter c must

be varied as well. This can be done by using equation (3.8) to solve for the parameter c in

terms of the period L and substitute into (3.7) to get for M purely in terms of L,

M =
ΩD−3L
16πG

(
(D − 4)L

4π

)D−4

(3.9)

We can then vary this formula to obtain

δM = (D − 3)
M
L δL = T δL (3.10)

in agreement with the first law (1.1). Had we not imposed the relation (3.9), the resulting

conical singularity would introduce a new contribution to the first law. This will be evident

from our derivation of the first law in section (4) below.

4. Proving the first law using Hamiltonian techniques

We now turn to the derivation of the first law (1.1) using the Hamiltonian methods of

references [10, 11, 13, 7]. We do this in two steps. In the first step we consider only

variations that preserve the length of the S1 at infinity, i.e. those that have δL = 0. In this

case, the previous results extend straightforwardly to the present MD−1 × S1 boundary

conditions to establish the result (1.1) with δL = 0. We recount the main points in this

derivation below, so that we may see what needs to be modified to allow for δL 6= 0. The

essential change that must be dealt with in this case is that the variation δgzz does not

vanish at infinity. To focus on this new feature, we will take the background spacetime to

be static rather than stationary.

4.1 The first law with δL = 0

Let ḡab be a static solution to the vacuum Einstein equations that is asymptotic toMD−1×
S1 at spatial infinity. We will call ḡab the unperturbed, or background, metric. The first law

follows from considering how the gravitational Hamiltonian changes under perturbations

to the background metric.

For the Hamiltonian decomposition, we write the full set of spacetime coordinates

coordinates xa as xa = (t, xα), where xα = (z, xi), with i = 1, . . . , D − 2. We write the

spacetime metric gab as

ds2 = −N2dt2 + γαβ(dxα +Nαdt)(dxβ +Nβdt) (4.1)

The background metric is static with respect to the Killing vector ∂/∂t. Hence, in appro-

priate coordinates the background shift vector vanishes, i.e. N̄α = 0. The background lapse

– 6 –
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and spatial metric are then denoted by N̄ and γ̄αβ respectively. Note that the gravitational

momentum of the background, π̄αβ , also vanishes.

Now consider the metric gab = ḡab + δgab, which is a perturbation of the static back-

ground metric. The perturbed metric gab is also required to solve the Einstein equations,

but is not required to be static. We examine how the gravitational Hamiltonian varies

under this perturbation. The Hamiltonian is given by

H =

∫
dD−1x

√
γ

{
N

(
−(D−1)R+

1

γ

(
παβπαβ −

1

D − 2
π2

))
− 2Nβ

[
Dα

(
1√
γ
παβ

)]}
,

(4.2)

where παβ is the gravitational momentum, and (D−1)R and Dα are respectively the scalar

curvature and covariant derivative operator for the metric γαβ on the spatial slice.

Let H|ḡab be the value of the Hamiltonian evaluated on the background metric, and

let δH|ḡAB be the first variation of the Hamiltonian, again evaluated at the background

metric. Since the gravitational Hamiltonian vanishes on vacuum solutions, and since we

are perturbing between vacuum solutions, we know that both of these quantities vanish.

The equation δH|ḡAB = 0, we will see, then relates a boundary integral at infinity to one

at the horizon. This relation yields the first law, as follows.

We now compute the first order variation in the Hamiltonian due to the perturbation

to the background metric. Since the momentum and shift vector for the background met-

ric vanish, the only nonvanishing contributions to δH| ḡAB come from varying the scalar

curvature of the spatial metric (D−1)R. The first order variation of the Hamiltonian about

the reference metric is then given by

δH|ḡAB =

∫
dD−1x

√
γ̄N̄

{
(D−1)R̄αβδγαβ −

(
γ̄αργ̄βσ − γ̄αβγ̄ρσ

)
D̄αD̄βδγρσ

}
, (4.3)

where indices are raised and lowered using the background spatial metric and D̄α is the

corresponding covariant derivative operator. As in the derivation of the Hamiltonian equa-

tions of motion, integration by parts gives δH|ḡAB as the sum of two pieces, a volume term

and a total derivative. One finds

δH|ḡAB = δH1 + δH2 (4.4)

where the volume term is given by

δH1 =

∫

Σ
dD−1x

√
γ̄
{

(D−1)R̄αβN̄ − D̄αD̄βN̄ + γ̄αβD̄ρD̄
ρN̄
}
δγαβ (4.5)

and the total derivative term is given by δH2 =
∫
dD−1x

√
γD̄αB

α, with

Bα =
(
γ̄αργ̄βσ − γ̄αβ γ̄ρσ

) (
−N̄D̄βδγρσ + δγρσD̄βN̄

)
. (4.6)

Consider the volume term δH1 first. The steps that we have followed above are those

one would follow in deriving the Hamiltonian equations of motion for the background

metric. In particular, the integrand of (4.5) is equal to the Lie derivative of the background

momentum π̄αβ with respect to the Killing vector ∂/∂t. Since the reference metric is static,

– 7 –
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this quantity vanishes and hence δH1 = 0. The vanishing of the integrand in (4.5) can also

be checked directly using the relation ∇̄a∇̄bξc = −R̄bcadξd for the Killing vector ξ = ∂/∂t.

Using Gauss’s law, δH2 can be written as a boundary term

δH2 =

∫

∂Σ
ds̄α

(
γ̄αργ̄βσ − γ̄αβ γ̄ρσ

) (
−N̄D̄βδγρσ + δγρσD̄βN̄

)
. (4.7)

The boundary of the spatial slice Σ has two components, an inner boundary at the black

hole horizon and an outer boundary at spatial infinity, which we denote by ∂ΣBH and

∂Σ∞ respectively. The equation δH|ḡAB = 0, which is satisfied for perturbations between

solutions to the equations of motion, then reduces to the requirement that

δH2|∂ΣBH + δH2|∂Σ∞ = 0 (4.8)

It is shown in reference [11] that the boundary integral evaluated at the horizon is given

by

δH2|∂ΣBH = 2κδA (4.9)

Although reference [11] was concerned with asymptotically flat spacetimes, this last result

just depends on ∂/∂t being the generator of a Killing horizon.2 It therefore continues to

hold, in particular, in the case of black holes asymptotic to MD−1 × S1.

Using this result, we can write equation (4.8) as

κδA
8πG

=
1

16πG

∫

∂Σ∞
ds̄αγ̄βρ

{
N̄(D̄βδγαρ − D̄αδγβρ)− (δγαβD̄ρN̄ − δγβρD̄αN̄)

}
(4.10)

To evaluate the right hand side of equation (4.10) note that with our boundary conditions,

the components of δγαβ all fall-off at least as fast3 as 1/rD−4, the fall-off required for

finiteness of the ADM mass and tension. Thus, although the volume element ds̄α, the

derivative operator D̄i and the lapse N̄ are those of the background metric ḡab, only the

long distance, flat space limits of these quantities contribute to the integral. For example,

in evaluating the integral it is accurate to make the replacement

γ̄αβδγαβ ' δαβδγαβ . (4.11)

Terms involving the derivative of lapse then, in particular, fall-off too fast to give non-zero

contributions. The right hand side of (4.10) then has the same form as equation (2.1) for

the ADM mass, with hαβ replaced by δγαβ , and hence gives the change δM in the ADM

mass under the perturbation. Hence, equation (4.10) becomes the first law

δM =
κδA
8πG

(4.12)

for black holes asymptotic to MD−1 × S1 with the length of the S1 at infinity held fixed.

2We also assume, following reference [11] that the horizon is a bifurcate Killing horizon.
3When we allow the length L of the S1 to vary below, the component δγzz will also have a constant

piece at infinity, which gives the change in length.
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We pause to point out how Kaluza-Klein bubbles fit into this framework. Equa-

tion (4.8) assumes that the only internal boundary is a black hole horizon. Kaluza-Klein

bubbles have no black hole horizons, but a generic bubble will have a conical singularity

on the axis of the ∂/∂z Killing vector. This means that special care must be used in the

Hamiltonian treatment, which effectively introduces an inner boundary surrounding the

conical singularity (see reference [14]). Our treatment has implicitly assumed that there

are no inner boundaries of this type present.

4.2 The first law with δL 6= 0

We now allow the length L of the S1 to vary and examine what changes this introduces to

the calculations above. We begin by recalling the formula for the ADM mass

M =
ΩD−3L
16πG

((D − 3)ct − cz), (4.13)

which assumes the asymptotic forms of the metric coefficients given in (2.3). We can vary

the length of the S1 at infinity, preserving these asymptotic forms, by simply changing the

period of the coordinate around the S1 to be L+ δL. From equation (4.13), it is clear that

the change in the ADM mass under this variation is then proportional to M/L. Hence,

we can write

δM =MδL
L + δM|δL=0 (4.14)

where, in varying the expression for the mass in (4.13), the quantity δM|δL=0 comes from

variations to ct and cz.

Let us now return to equation (4.8), which states that the sum of the boundary terms

that contribute to the variation of the Hamiltonian between nearby solutions must vanish.

This statement, which serves as the workhorse for proving the first law, continues to hold

with δL 6= 0. Moreover, the boundary term at the black hole horizon continues to be given

as in equation (4.9) by 2κδA.

The boundary term at infinity, however, does change. Since we are working to linear

order in perturbation theory, we can write it as the sum of two pieces. On the one hand,

we have a piece that is not proportional to δL. We have shown above that this piece is

given by 16πG times the variation δM|δL=0. On the other hand, we have a second piece of

the boundary term at infinity that is the part proportional to δL. Given this information,

equation (4.8) can be written as

κδA
8πG

= δM|δL=0 + λδL. (4.15)

The coefficient λ is then the quantity that we wish to determine. We can also go one step

further, and substitute for the quantity δM|δL=0 using equation (4.14) to get

κδA
8πG

= δM+

(
λ− ML

)
δL. (4.16)

To calculate the contribution λδL to the boundary term at infinity, one must be careful

in determining the perturbation δγzz = gzz− ḡzz. The unperturbed background metric has

– 9 –
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ḡzz ' 1 + cz/r
D−4 and the coordinate z around the S1 identified with period L. In the

perturbed metric, the coordinate z̃ around the S1 is identified with period L+ δL and the

corresponding metric component is given by

gz̃z̃ ' 1 +
cz + δcz
rD−4

. (4.17)

In order to compute the perturbation δγzz , one needs to take the difference of the perturbed

and the unperturbed metric expressed in the same coordinate system. The necessary

coordinate transformation is given by

z̃ = z

(
1 +

δL
L

)
, (4.18)

so that as in the background the coordinate z has period L. The behavior of the metric

component in the z direction near infinity is given in equation (2.3). Transforming the

metric to the new coordinate, and dropping terms beyond linear order in the perturbations,

gives gzz = (1 + 2 δLL )gz̃z̃, which then lets us determine the metric perturbation to be

δγzz = 2
δL
L
(

1 +
cz
rD−4

)
(4.19)

Note that this metric perturbation includes both a constant term at infinity, which gives

directly the change in length of the S1, and a change in the coefficient of the 1/rD−4 term.

We now evaluate the contributions proportional to δL in the boundary integral (4.7)

evaluated at infinity. In section (4.1), we argued that because the metric perturbations

fell off like 1/rD−4, that the terms involving the derivative of the lapse would fall off too

rapidly to contribute, as would terms involving the difference of the derivative operator

D̄α from the flat derivative operator. Since δγzz goes to a constant at infinity, this is no

longer the case and one finds the following contributions

λδL =
1

16πG

∫

Σ∞
dzdsi

{
−∂i(ḡzzδγzz) + Γ̄izzδγzz ḡ

zz ḡzz + ḡzzδγzz∂
iN̄
}

(4.20)

=
ΩD−3

16πG
(D − 4)(ct + cz)δL, (4.21)

where the behavior near infinity of the lapse function N̄ and the Christoffel symbol Γ̄izz
of the reference metric are found from the asymptotic forms (2.3). We can now plug our

result for λδL into equation (4.16) and find that the factors combine to give the first law

δM =
κδA
8πG

+ T δL. (4.22)

This relation was derived in [6] for perturbations that share the symmetries of the back-

ground metric. Here we have shown that the result holds for arbitrary perturbations

between solutions. Further, it is also straightforward within the present formalism to add

in perturbative sources of stress-energy.

– 10 –
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4.3 Adding source terms to the first law

Assume as above that ḡab is a static vacuum solution. Also as before, we consider an-

other metric gab = ḡab + δgab that is perturbatively close to gab. However, rather than

assuming that the metric gab solves the vacuum Einstein equations, we now allow for per-

turbative source terms with stress-energy given by δTab. This alters the analysis above

in the following way. Recall that the Hamiltonian constraint with sources is given by

H + 16πG
∫

Σ d
z dD−2x

√
γNρ = 0, where ρ is the energy density. Our equation (4.8) then

becomes

δH2|∂ΣBH + δH2|∂Σ∞ = −16πG

∫

Σ
dz dD−2x

√
γ̄N̄δρ (4.23)

and hence the first law becomes

δM =
κ

8π
δA+ T δL+

∫

Σ
dz dD−2x

√−ḡδρ. (4.24)

5. First law for T 2 Kaluza-Klein black holes

Having established the first law for S1 Kaluza-Klein black holes, we now show how the

Hamiltonian formalism can be used to derive a first law for black holes in higher dimensional

torus compactifications. We consider explicitly only the 2-torus. However, we expect that

our results should extend to n-torus compactifications as well.

The overall size and shape of a flat T 2 are specified by 3 real moduli. We will show

that the contribution of variations in these moduli to the first law may be expressed in

terms of the physics of elastic media, i.e. in terms of stresses and strains. The work done

in making a small deformation of an elastic medium (see e.g. [15]) is given by the integral

over the body of the contraction of the strain tensor for the deformation with the applied

stress tensor. Varying the moduli of the T 2 gives rise to a strain tensor δσAB , where the

indices A,B run over the 2 coordinates on the torus. Further, we will see that the role of

the stress tensor is played by the tension tensor T AB, defined below, which is a natural

generalization of the tension T of S1 Kaluza-Klein black holes. Both the tension and strain

tensors are constant over the T 2. Hence integration over the torus introduces an overall

factor of its volume V, and the first law for T 2 Kaluza-Klein black holes then takes the

form

δM =
κ

8πG
δA+ V T ABδσAB . (5.1)

One expects that T 2 Kaluza-Klein black holes have a rich phase structure [16, 17]. A

black hole horizon can be localized on the T 2, it may wrap one or the other of the nontrivial

cycles, or it may wrap around the entire T 2. There should be critical behavior associated

with transitions between all these different types of horizon topologies. For a fixed shape of

the T 2 at infinity, in analogy with the work of [6] from the S1 case, it is natural to expect

that a four-dimensional phase diagram including the massM and the 3 components of T ab
will be necessary to describe these transitions.

Moreover, in the T 2 case, the details of the phase diagram should additionally depend

on the shape of the torus. In the S1 case, there is only a single parameter needed to

– 11 –
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describe the compactification manifold, namely the length L. This can be used to set an

overall length scale for the axis of the phase diagram as in [6]. Hence, the phase diagram

looks the same for any value of L. For T 2 compactifications, the overall volume V of the

torus may similarly be scaled out. However, the remaining two real shape parameters for

the torus remain.

5.1 The tension tensor for T 2 Kaluza-Klein black holes

We define the tension tensor T AB for T 2 Kaluza-Klein compactifications in the following

way. Consider general relativity linearized around flat space. The ADM mass M is then

simply equal to the integral of the mass density ρ = T00. For the S1 compactification of

the z-direction considered above, the tension T in the linearized limit is similarly equal to

minus the integral of the pressure p = Tzz. In this case the integral is taken over all the

spatial directions except the z direction. We will straightforwardly extend these definitions

to obtain a symmetric tensor T AB for the T 2 case, which we call the tension tensor.4

Assume that the y and z directions are compactified on a T 2, which we will specify

in more detail below. Write the full set of spacetime coordinates as (t, y, z, xi) with i =

1, . . . , D − 3 and assume the following asymptotic forms for the metric components,

ḡtt ' −1 +
ct

rD−5
, ḡyy ' 1 +

cy
rD−5

, ḡzz ' 1 +
cz
rD−5

, ḡyz '
b

rD−5
(5.2)

We want to use linearized gravity to obtain formulas analogous to (2.4) for M and T AB.

Writing the spacetime metric as gab = ηab + hab, the linearized Einstein equations are

given by

2∂c∂(ahb)
c − ∂c∂chab − ∂a∂bhcc = 16πG

(
Tab −

1

D − 2
ηabTc

c

)
(5.3)

where indices are raised and lowered with the flat metric. Assume that both the sources

TAB and the perturbed metric hab are independent of the t, y and z coordinates. We

further assume that the only nonvanishing components of the stress-energy tensor are T00,

Tyy, Tyz and Tzz. By taking various linear combinations of the Einstein equations (5.3),

one can then obtain the following relations

1

D − 5
∂k∂

k ((D − 4)htt − hyy − hzz) = −16πGT00 (5.4)

1

D − 5
∂k∂

k ((D − 4)hyy − htt + hzz) = −16πGTyy (5.5)

1

D − 5
∂k∂

k ((D − 4)hzz − htt + hyy) = −16πGTzz (5.6)

∂k∂
khyz = −16πGTyz (5.7)

4A similar construction has been used in reference [18] in defining the (t, z) components of the stress-

energy tensor of boosted black strings.
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We can now obtain a formula for the ADM mass that is analogous to that in equa-

tion (2.4),

M =

∫
dvT00 (5.8)

= − V
16πG

1

(D − 5)

∫
dsi∂

i ((D − 4)htt − hyy − hzz) (5.9)

=
VΩD−4

16πG
((D − 4)ct − cy − cz)) . (5.10)

We then similarly define the elements of the tension tensor T AB, with A,B = y, z.

T AB = −
∫
dD−3xTAB, (5.11)

where we have omitted the integral over the torus directions as well as the integral over time

(see the discussion following equation (2.2)). This then defines a symmetric tensor. Using

equatiions (5.6), (5.7), (5.7) the volume integrals can be converted to boundary integrals.

Hence the elements of the tension tensor are given explicitly in terms of the coefficients in

terms of the far field behavior by

( T yy T yz
T zy T zz

)
= −ΩD−4

16πG

(
(D − 4)cy − ct + cz (D − 5)b

(D − 5)b (D − 4)cz − ct + cy

)
(5.12)

where the coefficients are defined in (5.2).

5.2 T 2 deformations

We now turn to the specifics of how we parameterize the shape and size of the T 2 at

infinity, as well as its deformations. An n-dimensional torus can, of course, be regarded

as the Euclidean n-plane modded out by a lattice. For the 2-torus, the lattice will have

2 basis vectors and we will use the components of these basis vectors to specify the size

and shape of the torus (see figure (5.2)). The torus is then given by points in the yz-plane

subject to the identifications

(
y

z

)
≡
(
y

z

)
+ ny

(
Ly
αz

)
+ nz

(
αy
Lz

)
(5.13)

where ny, nz ∈ Z. For a rectangular torus, in particular, αy = αz = 0 and the parameters

Ly, Lz are the lengths of the two sides. Note that we have one more parameter than needed

to describe the shape and size of the torus. The additional degree of freedom describes

the orientation of the lattice on the yz-plane. Changing the orientation of the lattice

does not alter the compactification, and hence the extra degree of freedom is unphysical.

Nevertheless, keeping it in the formalism allows us to highlight an interesting point below.

We can now deform the torus slightly by shifting the lattice vectors. In terms of the

components of the lattice vectors, the deformation of the torus is parameterized by

(Ly, Lz, αy, αz) −→ (Ly + δLy , Lz + δLz, αy + δαy , αz + δαz) (5.14)
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L

y

z

L y
αy

α z

z

Figure 1: A basic cell of the lattice defining the T 2 is shown. The parameters Ly, Lz, αy and αz
that give the y and z components of the basis vectors are illustrated.

As we did in the S1 case in section (4.2), we label the coordinates on the deformed torus

with tildes, so that the deformed torus is given by the ỹz̃-plane subject to the identifications
(
ỹ

z̃

)
≡
(
ỹ

z̃

)
+ ny

(
Ly + δLy
αz + δαz

)
+ nz

(
αy + δαy
Lz + δLz

)
. (5.15)

We will see that the first law for T 2 Kaluza-Klein black holes can be stated succinctly if

we treat the torus as an elastic medium (see e.g. reference [15]). In particular, it is useful to

compute the strain tensor corresponding to the deformation of the torus described above.

This is defined in the following way. If the positions of points in an elastic medium are

deformed from their original positions according to the vector field ξA, then the strain

tensor δσAB is given by δσAB = ∂AξB .

In order to calculate the strain tensor for the deformed T 2, we need to be able to

identify every point on the deformed torus with a point on the undeformed torus. To do

this we transform from the coordinates (ỹ, z̃) with identifications (5.15) back to the original

coordinates (y, z) with the identifications (5.13). The transformation is given by

(
y

z

)
=

(
ỹ

z̃

)
− 1

V

(
LzδLy − αzδαy −αyδLy + Lyδαy
−αzδLz + Lzδαz LyδLz − αyδαz

)(
ỹ

z̃

)
(5.16)

where V = LyLz−αyαz is the volume of the undeformed torus, and we are working to first

order in the deformation parameters δLy, δLy, δαy and δαz .

We can now think of the deformation of the torus in the following way. The coordinates

(y, z) specify a point on the undeformed torus, and (ỹ, z̃) are the coordinates of the same

point on the deformed torus. The displacement vector ξ is then given by

( ξyξz ) =

(
ỹ

z̃

)
−
(
y

z

)
, (5.17)

and the strain tensor is found to be
(
δσyy δσyz
δσzy δσzz

)
=

1

V

(
LzδLy − αzδαy −αyδLy + Lyδαy
−αzδLz + Lzδαz LyδLz − αyδαz

)
(5.18)

Note in particular, that the trace of δσAB gives the fractional change in volume of the torus

Tr δσ =
δV
V . (5.19)

– 14 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
2

The trace-free symmetric part of δσ gives the shear part of the deformation, while the

antisymmetric part gives a rotation of the torus on the yz plane. As we noted above,

such a rotation does not physically alter the torus, and we will see below that indeed the

antisymmetric part of the strain tensor does not contribute to the first law.

5.3 Derivation of the first law

Let us denote the moduli of the T 2 collectively by {ρI} = {Ly, Lz.αy, αz} with I = 1, . . . , 4

and we include the unphysical rotational degree of freedom. If we consider variations

around a T 2 Kaluza-Klein black hole with the values of the moduli held fixed, δρI = 0,

then the results of section (4.1) apply and the first law again has the form (4.12).

We can now consider variations in the moduli as well. Following the considerations

above in section (4.2), we can then write an analogue of equation (4.15) for the T 2 case,

κδA
8πG

= δM|δρl=0 +

4∑

I=1

λIδρI . (5.20)

Moreover, the ADM mass depends on the moduli only through the overall volume of the

T 2, as in equation (5.8). Therefore, we can write

δM = δM|δρI=0 +MδV
V . (5.21)

Combining these last two equations gives

κδA
8πG

= δM +

4∑

I=1

λIδρI −M
δV
V . (5.22)

In order to calculate the contributions to (5.20) that come from varying the moduli,

we return to equation (4.10), which we reproduce here

κδA
8πG

=
1

16πG

∫

∂Σ∞
ds̄αγ̄βρ

{
N̄(D̄βδγαρ − D̄αδγβρ)− (δγαβD̄ρN̄ − δγβρD̄αN̄)

}
. (5.23)

We will keep only terms proportional to the variations of the moduli. We then need only

consider then, the components of the metric perturbation δγAB for the torus directions.

As we did for the S1 case in section (4.2), we must calculate the perturbation to the metric

δγAB in the original (y, z) coordinate system on the T 2, i.e. in which the coordinates have

the identifications (5.13).

Let (x1, x2) = (y, z) and (x̃1, x̃2) = (ỹ, z̃). To linear order in the variations of the

moduli, we can then write the coordinate transformation (5.16) as

x̃A = (δAB + δσAB)xB (5.24)

Since we are working to linear order in perturbations and keeping only terms proportional

to the variations in the moduli, the metric g̃AB on torus in the coordinates x̃A can be taken

to equal the background metric ḡAB in (5.2),

g̃AB = ḡAB . (5.25)
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In this coordinate system, the metric perturbation is encoded in the varied identifica-

tions (5.15). Transforming to the coordinates xA with the original identifications then

gives

gAB = g̃AB + g̃CBδσ
C
A + g̃ACδσ

C
B. (5.26)

The perturbation to the metric δγAB = gAB − ḡAB coming from the deformation of the T 2

is then given explicitly by

δγyy =
2

V

{
(1 +

cy
rD−5

)(LzδLy − αzδαy) +
b

rD−5
(−αzδLz + Lzδαz)

}
(5.27)

δγyy =
2

V

{
(1 +

cz
rD−5

)(LyδLz − αyδαz) +
b

rD−5
(−αyδLy + Lyδαy)

}

δγyz = δγzy =
1

V
{

(1 +
cy
rD−5

)(−αyδLy + Lyδαy) + (1 +
cz
rD−5

)(−αzδLz + Lzδαz)

+
b

rD−5
(LzδLy − αzδαy + LyδLz − αyδαz)

}

In these original coordinates, we see the metric perturbation has both terms that go to

constants at infinity and terms that decay like 1/rD−5.

From the metric perturbation, we can now calculate the right hand side of equa-

tion (5.20), with the result

4∑

I=1

λIδρI =
ΩD−4

16πG
(D − 5) {cy(LzδLy − αzδαy) + cz(LyδLz − αyδαz) (5.28)

+b(Lyδαy − αyδLy) + b(Lzδαz − αzδLz) + ctδV}

This result in turn can be plugged into equation (5.22), which after making use of equa-

tion (5.10) can be processed into the form

δM =
κδA
8πG

+
ΩD−4

16πG
{−((D − 4)cy − ct + cz)(LzδLy − αzδαy) (5.29)

−((D − 4)cz − ct + cy)(LyδLz − αyδαz)− (D − 5)b(Lyδαy − αyδLy)
−(D − 5)b(Lzδαz − αzδLz)} .

This last expression looks quite complicated. However, if one looks at equation (5.29)

with equations (5.18) and (5.12) for the strain and tension tensors in mind, one sees that

equation (5.29) can be rewritten in the simple form

δM =
κδA
8πG

+ V T ABδσAB . (5.30)

This completes the derivation of the first law for T 2 Kaluza-Klein black holes.5 Recall that

the antisymmetric part of the strain tensor represents a rotation of the basic cell of the T 2

5Based on the first law (1.1) for S1 Kaluza-Klein black holes, one might be surprised by the prefactor of

Vthat appears in the work term for the T 2 case. However, if one computes the strain of the S1 following the

definitions of section (5.2), one finds that δσ = δL/L. Hence, the work term in the S1 case, when expressed

in terms of the strain, becomes LT δσ in parallel with the T 2 case.
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within the Euclidean plane, leaving its size and shape unchanged. This mode is present

because we kept all four of the components of the lattice basis vectors in our formalism,

which is one more degree of freedom that needed. It follows from the first law, however,

that because the tension tensor is symmetric, the antisymmetric part of the strain tensor

makes no contribution.

6. Conclusions

In this paper we have studied how variations in the moduli enter the first law for Kaluza-

Klein black holes. Following the introduction and some basic formulas in the opening

sections, in section (3) we discussed two simple examples, the uniform black string and the

Kaluza-Klein bubble, that illustrate how the first law for Kaluza-Klein black holes operates

in practice. The formula for the ADM mass in these spacetimes is simply proportional to

the length of the S1. However, when this length is varied we saw that holding the horizon

area fixed for the black string, or preventing a conical singularity for the bubble, does

indeed yield a change in mass proportional to the tension, in accordance with the first law.

In section (4) we presented a derivation of the first law (1.1) for S1 Kaluza-Klein black

holes [5, 6] based on the Hamiltonian methods of references [10, 11]. We highlighted how

the T δL work term arises from a careful treatment of the boundary term at infinity in

equation (4.10). This careful treatment was necessary because when the moduli are varied,

certain components of the metric perturbations have constant pieces at infinity.

In section (5) we used the Hamiltonian methods to derive a new result, the first

law (1.2) for T 2 Kaluza-Klein black holes. We saw that the statement of the first law,

in this case, takes a simple form if we consider the T 2 to be an elastic body, which is

deformed by varying the moduli. The resulting work term is given by the contraction

of the strain tensor for the deformed T 2 with the tension tensor, which was defined in

section (5.1), times a factor of the overall volume of the T 2.

Two interesting directions to pursue further are the following First, if we consider

T n Kaluza-Klein black holes with n > 2, it seems quite likely that the first law will in

general take the form (1.2) that we have found in the T 2 case. However, the derivation

we have given in the T 2 case, involving the explicit representation of the moduli given in

section (5.2), will likely prove cumbersome to extend to the general case. It would be nice

to find a more streamlined derivation.

Second, we would like to consider more general Ricci-flat compactifications, such as

Calabi-Yau manifolds. In this case, we would also expect the results to be phrased in

terms of a strain tensor that encodes the deformation of the manifold as the moduli are

varied. However, the definition of the strain tensor used in section (5.2) makes use of the

representation of a T 2 as the Euclidean plane identified under a lattice of translations. To

handle non-flat spaces, a more intrinsic definition of the strain tensor in terms of metric

perturbations is necessary. We plan to return to these topics in future work.
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